Consider  $f (x) = | 1 - x | \,;\,1 \le x \le 2 $   and $g (x) = f (x) + b sin\,\frac{\pi }{2}\,x$, $1 \le x \le 2$  then which of the following is correct ?

  • A

    Rolles theorem is applicable to both $f, g$ and $b =\frac{3}{2}\,$

  • B

    $LMVT$ is not applicable to $f$ and Rolles theorem if applicable to $g$ with $b =\frac{1}{2}\,$

  • C

    $LMVT$ is applicable to $f$ and Rolles theorem is applicable to $g$ with $b = 1$

  • D

    Rolles theorem is not applicable to both $f, g$ for any real $b.$

Similar Questions

If $f(x) = \cos x,0 \le x \le {\pi \over 2}$, then the real number $ ‘c’ $ of the mean value theorem is

Let $f$ be any function continuous on $[\mathrm{a}, \mathrm{b}]$ and twice differentiable on $(a, b) .$ If for all $x \in(a, b)$ $f^{\prime}(\mathrm{x})>0$ and $f^{\prime \prime}(\mathrm{x})<0,$ then for any $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$ is greater than

  • [JEE MAIN 2020]

Let $f$ and $g$ be real valued functions defined on interval $(-1,1)$ such that $g^{\prime \prime}(x)$ is continuous, $g(0) \neq 0, g^{\prime}(0)=0, g^{\prime \prime}(0) \neq$ 0 , and $f(x)=g(x) \sin x$.

$STATEMENT$ $-1: \lim _{x \rightarrow 0}[g(x) \cot x-g(0) \operatorname{cosec} x]=f^{\prime \prime}(0)$.and

$STATEMENT$ $-2: f^{\prime}(0)=g(0)$.

  • [IIT 2008]

If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f ^{\prime}\left(\frac{4}{3}\right)=0,$ then ordered pair $( a , b )$ is equal to

  • [JEE MAIN 2021]

The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is

  • [JEE MAIN 2020]